Expert Finding for Community-Based Question Answering via Ranking Metric Network Learning

نویسندگان

  • Zhou Zhao
  • Qifan Yang
  • Deng Cai
  • Xiaofei He
  • Yueting Zhuang
چکیده

Expert finding for question answering is a challenging problem in Community-based Question Answering (CQA) site, arising in many applications such as question routing and the identification of best answers. In order to provide high-quality experts, many existing approaches learn the user model mainly from their past question-answering activities in CQA sites, which suffer from the sparsity problem of CQA data. In this paper, we consider the problem of expert finding from the viewpoint of learning ranking metric embedding. We propose a novel ranking metric network learning framework for expert finding by exploiting both users’ relative quality rank to given questions and their social relations. We then develop a randomwalk based learning method with recurrent neural networks for ranking metric network embedding. The extensive experiments on a large-scale dataset from a real world CQA site show that our method achieves better performance than other state-of-theart solutions to the problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZhihuRank: A Topic-Sensitive Expert Finding Algorithm in Community Question Answering Websites

Expert finding is important to the development of community question answering websites and e-learning. In this study, we propose a topic-sensitive probabilistic model to estimate the user authority ranking for each question, which is based on the link analysis technique and topical similarities between users and questions. Most of the existing approaches focus on the user relationship only. Co...

متن کامل

Community-Based Question Answering via Asymmetric Multi-Faceted Ranking Network Learning

Nowadays the community-based question answering (CQA) sites become the popular Internet-based web service, which have accumulated millions of questions and their posted answers over time. Thus, question answering becomes an essential problem in CQA sites, which ranks the high-quality answers to the given question. Currently, most of the existing works study the problem of question answering bas...

متن کامل

Cold-Start Expert Finding in Community Question Answering via Graph Regularization

Expert finding for question answering is a challenging problem in Community-based Question Answering (CQA) systems such as Quora. The success of expert finding is important to many real applications such as question routing and identification of best answers. Currently, many approaches of expert findings rely heavily on the past question-answering activities of the users in order to build user ...

متن کامل

An Exploration of Data Augmentation and RNN Architectures for Question Ranking in Community Question Answering

The automation of tasks in community question answering (cQA) is dominated by machine learning approaches, whose performance is often limited by the number of training examples. Starting from a neural sequence learning approach with attention, we explore the impact of two data augmentation techniques on question ranking performance: a method that swaps reference questions with their paraphrases...

متن کامل

On dynamicity of expert finding in community question answering

Community Question Answering is one of the valuable information resources which provide users with a platform to share their knowledge. Finding potential experts in CQA is beneficial to several problems like low participation rate of the users, long waiting time to receive answers and to the low quality of answers. Many research papers focused on retrieving the expert users of CQAs. Most of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016